Análise de redes sociais aplicada aos aeroportos brasileiros

Social network analysis for Brazilian airports

Authors

  • MARIANA VALERIO SILVA CRUVINEL Especialista em Data Science e Analytics. Rua Venâncio Aires, 641, Vila Pompéia, 05024-030, São Paulo, São Paulo, Brasil https://orcid.org/0009-0005-9433-7337
  • Felipe Pinto Silva Doutorando do Programa de Pós-Graduação em Economia da Universidade Estadual de Campinas (Unicamp). Rua Pitágoras, 353, Cidade Universitária, 13083-857, Campinas, São Paulo, Brasil https://orcid.org/0000-0002-9441-1614

DOI:

https://doi.org/10.22167/2675-441X-2025849

Keywords:

Operational Research, Social Network Analysis (SNA), Business Intelligence (BI)

Abstract

Air traffic in Brazil grew significantly in 2020 and 2021 despite the impact of COVID. We have seen a resumption of growth in this segment throughout the following years. Considering this growth, it is necessary to analyze the air network to identify important airports. A detailed analysis of the air network was conducted using Social Network Analysis (SNA) to identify these airports, based on data provided by the National Civil Aviation Agency (ANAC). Among all the metrics used, centrality, betweenness, and closeness metrics stand out, as they help identify relevant airports. The study considered two perspectives, weighing the network by the number of takeoffs and by the number of paying passengers. Among the results obtained, in addition to confirming the importance of the Guarulhos and Campinas airports, other non-obvious findings were identified. Notably, Manaus Airport and smaller airports such as São Gonçalo do Amaral and Várzea Grande were also highlighted as relevant by the analysis. These results demonstrate the necessity of the analysis presented throughout the paper and can serve as a basis for decision-making by airlines. As a proposal for future work, it is possible to use the HITS algorithm, a network analysis technique, to identify authorities and hubs. Additionally, it is suggested to analyze the average delay times at these identified airports and the impact this has on the Brazilian air network.

References

Périco, A.E.; Santana, N.B.; Rebelatto, D.A.N. 2017. Eficiência dos aeroportos internacionais brasileiros: uma análise envoltória de dados com bootstrap. Gestão & Produção 24(2): 370-381. https://doi.org/10.1590/0104-530X1810-15. DOI: https://doi.org/10.1590/0104-530x1810-15

Oliveira, B.C.; Castilho, D. 2020. Entre fluxos e escalas: COVID-19 e suas implicações na rede de transporte aéreo no primeiro semestre de 2020. GEOgraphia 22(49). https://doi.org/10.22409/geographia2020.v22i49.a45882. DOI: https://doi.org/10.22409/GEOgraphia2020.v22i49.a45882

Paiva, I.V.L.; Assunção, M.V.D.; Medeiros, M.; Paes, D.C.A.S.; Moreira, L.N.R. 2021. A influência da movimentação de passageiros nos aeroportos brasileiros quanto ao aumento do contágio da COVID-19. Holos – IV Dossiê COVID-19 e o mundo em tempos de pandemia 37(4): e11281. https://doi.org/10.15628/holos.2021.11281.

Yang, S.; Chen, Z. 2022. The impact of COVID-19 on high-speed rail and aviation operations. Sustainability 14(3): 1683. https://doi.org/10.3390/su14031683. DOI: https://doi.org/10.3390/su14031683

Agência Nacional de Aviação Civil. 2022a. Tarifa aérea doméstica acumula alta de 21,7% no primeiro semestre do ano. Disponível em: <https://www.gov.br/anac/pt-br/noticias/2022/tarifa-aerea-domestica-acumula-alta-de-21-7-no-primeirosemestre-do-ano> Acesso em: 10 out. 2022.

Frazão, J.A.F.; Oliveira, A.V.M. 2020. Distribuição de renda e demanda por transporte aéreo: uma especificação de modelo econométrico para o mercado doméstico brasileiro. Transportes 28(3). https://doi.org/10.14295/transportes.v28i5.1662. DOI: https://doi.org/10.14295/transportes.v28i5.1662

Machado, A.F.; Cardoso, D.F.; Michel, R.C.; Melo, G.B.V.; Guimarães, A.D. 2022. Efeitos da COVID-19 na economia da cultura no Brasil. Revista Econômica do Nordeste 53(1): 124-136. https://doi.org/10.61673/ren.2022.1324. DOI: https://doi.org/10.61673/ren.2022.1324

Agência Nacional de Aviação Civil. 2022b. Demanda e oferta do transporte aéreo atingiram 99% do percentual apurado no período pré-pandemia. Disponível em: <https://www.gov.br/anac/pt-br/noticias/2022/demanda-e-oferta-do-transporteaereo-atingiram-99-do-percentual-apurado-no-periodo-pre-pandemia> Acesso em: 10 out. 2022.

Ganji, S.S.; Mardani, A.; Jahed, R. 2024. Assessment of Iranian airlines using network cross-efficiency DEA and the regret theory. Case Studies on Transport Policy 18: 101266. https://doi.org/10.1016/j.cstp.2024.101266. DOI: https://doi.org/10.1016/j.cstp.2024.101266

Wang, F. 2006. Quantitative Methods and Applications in GIS. CRC Press. https://doi.org/10.1201/9781420004281. DOI: https://doi.org/10.1201/9781420004281

Siozos-Rousoulis, L.; Robert, D.; Verbeke, W. 2021. A study of the U.S. domestic air transportation network: temporal evolution of network topology and robustness from 2001 to 2016. Journal of Transportation Security 14: 55-78. https://doi.org/10.1007/s12198-020-00227-x. DOI: https://doi.org/10.1007/s12198-020-00227-x

Wang, J.; Mo, H.; Wang, F.; Jin, F. 2011. Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach. Journal of Transport Geography 19(4): 712–721. https://doi.org/10.1016/j.jtrangeo.2010.08.012. DOI: https://doi.org/10.1016/j.jtrangeo.2010.08.012

Bombelli, A.; Santos, B.F.; Tavasszy, L. 2020. Analysis of the air cargo transport network using a complex network theory perspective. Transportation Research Part E: Logistics and Transportation Review 138: 101959. https://doi.org/10.1016/j.tre.2020.101959. DOI: https://doi.org/10.1016/j.tre.2020.101959

Prabhakar, N.; Anbarasi, L.J. 2021. Exploration of the global air transport network using social network analysis. Social Network Analysis and Mining 11(26). https://doi.org/10.1007/s13278-021-00735-1. DOI: https://doi.org/10.1007/s13278-021-00735-1

Agência Nacional de Aviação Civil. 2022c. Aéreas brasileiras apresentaram recuperação financeira após impacto causado pela pandemia. Disponível em: <https://www.gov.br/anac/pt-br/noticias/2022/aereas-brasileiras-apresentaram-recuperacaofinanceira-apos-impacto-causado-pela-pandemia> Acesso em: 10 out. 2022.

Agência Nacional de Aviação Civil. 2025. Lista de aeródromos civis cadastrados - Cadastro de aeródromos - Formato CSV. Disponível em: <https://www.gov.br/anac/pt-br/assuntos/regulados/aeroportos-e-aerodromos/lista-de-aerodromos-civiscadastrados> Acesso em: 15 abr. 2025.

Agência Nacional de Aviação Civil. 2024. Voos e operações aéreas - Dados Estatísticos do Transporte Aéreo - Formato CSV. Disponível em: <https://www.anac.gov.br/acesso-a-informacao/dados-abertos/areas-de-atuacao/voos-e-operacoes-aereas/dados-estatisticos-do-transporte-aereo/> Acesso em: 20 jul. 2024.

Knafic, C.N. 2017. Storytelling com dados: um guia sobre visualização de dados para profissionais de negócios. Alta Books. Rio de Janeiro, RJ, Brasil.

Scott, J. 2012. What is Social Network Analysis? Bloomsbury Academic, London, UK. https://doi.org/10.5040/9781849668187. DOI: https://doi.org/10.5040/9781849668187

Newman, M.E.J. 2010. Networks: An Introduction. Oxford University Press, USA. https://doi.org/10.1093/acprof:oso/9780199206650.001.0001. DOI: https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

Finkel, M.D.; Del-Vecchio, R.R. 2021. Analysis of the brazilian stock market through graph centrality measures. Pesquisa Operacional 41: e248549. https://doi.org/10.1590/0101-7438.2021.041.00248549. DOI: https://doi.org/10.1590/0101-7438.2021.041.00248549

Brandão, L.C; Del-Vecchio, R.R.; Mello, J.C.C.B.S.; Francisco, C.N. 2020. Evaluating the importance of brazilian ports using graph centrality measures. Pesquisa Operacional 40: 1-17. https://doi.org/10.1590/0101-7438.2020.040.00193663. DOI: https://doi.org/10.1590/0101-7438.2020.040.00193663

Oliveira, B.F.; Oliveira, A.V.M. 2024. Determinantes do planejamento estratégico da rede de uma companhia aérea. Communications in Airline Economics Research 1: 10671669. https://doi.org/10.5281/zenodo.10671668.

Zeng, W.; Ren, Y.; Wei, W.; Yang, Z. 2021. A data-driven flight schedule optimization model considering the uncertainty of operational displacement. Computer & Operations Research 133: 105328. https://doi.org/10.1016/j.cor.2021.105328. DOI: https://doi.org/10.1016/j.cor.2021.105328

Published

2025-08-19

How to Cite

CRUVINEL, M. V. S., & Silva, F. P. (2025). Análise de redes sociais aplicada aos aeroportos brasileiros: Social network analysis for Brazilian airports. Quaestum, 6, 1–14. https://doi.org/10.22167/2675-441X-2025849

Issue

Section

Article